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Surface disclination cores in the B2 phase of bent-shaped molecules described by the
Peierls–Nabarro model

Lubor Lejček*

Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic

(Received 12 February 2009; final form 17 June 2009)

The Peierls–Nabarro model, originally proposed to describe dislocation core in solids, is used to model core structures
of 2�- and �-surface disclinations in the B2 phase of bent-shaped molecules. Structures of disclination cores are
determined by surface anchoring. Core parameters as core widths (and positions of two partial �-disclinations as
parts comprising 2�-disclination) are estimated using surface anchoring energy. Disclination core widths are usually
narrow for strong anchoring. In such a case they are barely observable; nevertheless, they can exist.

Keywords: B2 phase; bent-shaped molecules; surface disclinations; Peierls–Nabarro model

1. Introduction

In liquid crystals composed of bent-shaped molecules,

rich varieties of textures are observed. The phase

called B2 has been extensively investigated. Basically,

four possible polar structures in the B2 phase, i.e. two

racemic and two homochiral structures, have been

identified (1). In the following we will be interested in

homochiral phases only.
Observations of textures under an external electric

field revealed that the B2 phase occurs in chiral phases

either as an anticlinic antiferroelectric smectic struc-

ture (denoted as SmCAPA) or as a synclinic ferroelec-

tric smectic (SmCSPF) structure (see e.g. (1–3)). The

(SmCSPF) structure can occur in domains near sur-

faces with strong polar anchoring.

When a sample is subjected to an external electric
field, 2� or �-walls can be created in the sample bulk

(4). Note that 2�-walls do not lead to a change of

chirality, while �-walls do change it. When the field

is switched off, walls are destabilised and eventually

collapse to surface lines, surface disclinations, stabi-

lised by surface anchoring. One may expect that these

surface lines are either 2�- or �-disclinations. In both

cases, far from the dislocation line, molecules of liquid
crystal keep their orientations by polar surface

anchoring. For 2�- disclinations the director rotates

by 2� with the director changes being localised just

near the surface. Surface 2�-disclinations are very fre-

quently observed in the chiral smectic C liquid crystal

with elongated molecules (5).

The other possibility of surface defects in B2 phases

is �-surface disclination, which mediates synclinic
structures of opposite chirality rotated by an angle �.

These synclinic structures have the same optical con-

trast for the �=4-tilt angle (4).

In the present work, inspired by observations in

(4, 6), we will propose:

(i) models of 2�- and �- surface disclinations using

the Peierls–Nabarro (PN) model originally devel-

oped for dislocations in solids;

(ii) an estimation of model parameters of surface dis-

clination cores deduced from surface anchoring

energies.

2. Energy considerations in B2 model structures

In this section, different energy contributions to the

total energy of the B2 structures are outlined. First, a

general description of molecular orientation is given in

Section 2.1. Different terms comprising the surface

anchoring energy are discussed in Section 2.2. An

approximate elastic free energy density is introduced
in the Section 2.3.

2.1 Molecular Orientation in Layers

The orientation of bent-shaped molecules in layers can

be described by three Eulerian angles �, � and  (7).

These angles are defined in the coordinate system with
x and y axes parallel to the smectic layers and the

z-axis normal to the plane of the smectic layers

(Figures 1 and 2). Angle � describes the tilt of a long

molecular axis, which coincides with molecular unit

director ~n. The azimuthal angle � characterises the

director rotation around the z-axis. The unit vector

of the molecular dipole moment of a bent-shaped
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molecule is denoted as~p perpendicular to~n. The plane

containing the z-axis and director ~n is called the tilt

plane. The angle  , which describes the rotation of~p, is

measured from this tilt plane. A detailed geometrical

representation of the molecule is also given in Figure 1,

as shown in (8, 9). Sample surfaces are assumed to be

perpendicular to the x-axis.

When we suppose no layer deformations, the mole-

cular tilt angle is constant and molecular orientation

depends on only two variable angles: � and . Here the

molecular orientation is determined by vectors~n and~p
expressed in (7) in the form:

~p ¼ ðcos � cos� cos � sin� sin ;

cos � sin� cos þ cos� sin ; � sin � cos Þ;
~n ¼ ðsin � cos� ; sin � sin� ; cos � Þ:

ð1Þ

With the molecular tilt angle � fixed, the director
~c ¼ cos�; sin�; 0ð Þ, which is the projection of the

director~n onto the (x, y)-plane of smectic layers, can

be used to describe the molecular orientation in layers.

In order to describe geometrically an anticlinic anti-

ferroelectric state of the B2 phase we use the bilayer

continuous model proposed in (10, 11) for antiferro-
electric liquid crystals with elongated molecules. Let us

suppose that the molecular orientation is characterised

by angles �1 and 1 in odd-numbered layers and �2 and

 2 in even-numbered layers. We can then define vectors
~c1 ¼ ðcos�1; sin�1; 0Þ, ~c2 ¼ ðcos�2; sin�2; 0Þ and ~p1

and~p2 using expression (1) with angles �1,  1 and �2,

 2, respectively. According to Orihara and Ishibashi

(10), let us introduce vectors:

~cþ ¼ ~c1 þ~c2ð Þ=2 and~c� ¼ ~c1 �~c2ð Þ=2; ð2aÞ
and

~pþ ¼ ~p1 þ~p2ð Þ=2 and ~p� ¼ ~p1 �~p2ð Þ=2: ð2bÞ

y

p

c n

Smectic  
layer  
thickness 

φ
ψ

θ θ

x’

x 

Sample surface || (y,z) 

Nz

Figure 1. The coordinate system with the bent-shaped
molecule. The plane of the bent-shaped molecule (which is
represented by a gray banana-like object) is defined by
director ~n and vector ~p parallel to spontaneous polarisation.
The~c-director is the projection of ~n onto the layer plane, the
normal of which, ~N, is parallel to the z-axis. Eulerian angles are
defined using the coordinate system ðx; y; zÞ: first, the plane of
the molecule is tilted from the z-axis by an angle � (the angle � is
the apex angle of a cone on the surface of which the director~n of
a bent-shaped molecule is situated). Then the tilted molecular
plane is rotated around the z-axis by an azimuthal angle � from
the x-axis. This rotation transforms the x-axis to the x’-axis.
Finally, the plane of the molecule is rotated around the director
~n by an angle from the x’-axis. The plane of the sample surface
is the plane ðy; zÞ. Smectic layers are perpendicular to the sample
surface and thus parallel to the plane ðx; zÞ.

z 

y 

Disclination core 

x 

Figure 2. Surface disclination and the orientation of smectic layers. Disclination parallel to the y-axis is situated under the
sample surface. The disclination core is spread on the surface along the z-axis. Smectic layers perpendicular to the sample surface
ðy; zÞ have the z-axis as the layer normal.
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The combination of the above-defined vectors given

by expressions (2) defines each of the synclinic or

anticlinic, ferroelectric or antiferroelectric molecular

structures (see also (8)). In the following, we assume

the smectic layers to be perpendicular to the sample

surfaces.

2.2 Surface anchoring energy

The anchoring of bent-shaped molecules to sample

surfaces has already been discussed in (12). The possi-

ble molecular orientation on the surface was either flat

or edge. As smectic layers are perpendicular to sample

surfaces we expect the molecules to be attached to the

surfaces by their edges.
The anchoring energy WA can be expressed using (13):

WA ¼ ��1
~NS:~pþ

� �2

þ�2
~NS:~pþ

� �
� �3

~NS:~p�

� �2

þ�5
~NS:~cþ

� �2

þ�6
~NS:~c�

� �2

:

ð3Þ

In this expression, the external normal to the sample

surface is denoted as ~NS (parallel or antiparallel to the

x-axis) and parameters �1, �2 and �3 are the anchoring
constants, which represent anchoring energies per unit

surface.

The first term in (3) characterises the non-polar

anchoring and it attains a minimal value for~pþ parallel

or antiparallel to ~NS. The second term expresses the

polar anchoring of molecules. Note that the bulk term

div ~pþ which can exist in the polar B2 phase (14, 15) can

be transformed to a surface term which contributes to
this second term in the surface anchoring energy (3). Let

us suppose that the preferable orientation of~pþ points

to the inside of the sample. This term then has the sign

(+) in (3). The third term describes the antiferroelectric

interaction of molecules with surfaces.

When polar ferroelectric anchoring dominates,

parameters �1, �2 and �3 are expected to be positive

and �1 þ �2 > �3 (9). Thus the antiferroelectric
anchoring is unfavourable compared with the ferro-

electric anchoring. On the other hand, when

�1 þ �2 � �3 the ferroelectric anchoring does not sta-

bilise the ferroelectric structure at the surfaces and

antiferroelectric order from the bulk extends to the

surface.

As shown in (12), other anchoring terms are possible

which may prefer the plane of bent-shaped molecules to
be either parallel or perpendicular to the surface. Such

terms can be e.g. �4
~NS:~cþ
� �

, �5
~NS:~cþ
� �2

and �6
~NS:~c�
� �2

.

In the following we suppose that the polar surface

anchoring is dominant, i.e. �2 >> �1; �3, and is able to

create a surface domain with a ferroelectric structure.

The term �4
~NS:~cþ
� �

has the tendency to orient director
~cþ to be either parallel or antiparallel to the surface

normal. However, for dominant polar anchoring the vec-

tor~pþ is oriented along ~NS, not the director~cþ. Thus we

take �4 ¼ 0 and the anchoring energy WA is then given in

the form (3). When supposing �5 > 0, �6 > 0 the pre-

ferred anchoring of the~c-directors will be either synclinic
or anticlinic with~c-directors parallel to surfaces.

2.3 Elastic energy of B2 phase

Let layers of the B2 phase not be deformed so the tilt

angle � is constant. In this case, bent-shaped molecules

are described by the directors~c1,~c2 and the polarisations
~p1,~p2, respectively (9, 10). The molecular orientation in
bilayers is described by the directors~c1 and~c2 as in the

case of an antiferroelectric phase composed of elongated

molecules. The orientation of directors in the smectic

layer is determined by the azimuthal angles �1 and �2.

The polarisations~p1 and~p2 depend also on the angles 1

and  2. All angles are functions of the variables x and z.

The corresponding classic gradient energy can be con-

structed as in (8, 9) and considering (10, 11). In the
synclinic ferroelectric structure we have �1 ¼ �2 ¼ �
and  1 ¼  2 ¼ �=2. The elastic free energy density can

be written in the same form as that for chiral smectic C

liquid crystals with elongated molecules:

fd ¼
K

2

@ �

@ x

� �2

þ @ �

@ z
� qf

� �2
" #

; ð4Þ

with one elastic constant K for simplicity. The para-

meter qf ¼ 2�=pf is connected with the pitch pf of

helical structures in ferroelectric phases. However, in

the following we expect the structure to be unwound

near the surface due to the anchoring. The form of (4)
expects the wall or surface disclination to be parallel to

the y-axis.

The equilibrium equation is then:

@2 �

@ x2
þ @

2 �

@ z2
¼ 0: ð5Þ

3. Surface disclination cores

In this section, structures of 2�- and �- surface discli-

nations will be determined using a modified PN

model. The PN model describes the disclination core

spread on the sample surface where it is governed by

the non-linear anchoring energy (3), while the bulk

elasticity of the liquid crystal is approximated by the
energy (4) (16, 17). We suppose that surface disclina-

tions are parallel to the y-axis (Figure 2).
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3.1 (2p)-surface disclination core

The surface disclination can be created, for example,

from bulk 2�-twist disclination somehow pushed to

the surface during a phase transition or by an electric
field. The 2�-surface disclination may also originate

from a wall stabilised by an external electric field and

transformed to a surface line after the field is

switched out.

As the core of the 2�-surface disclination is situ-

ated on the sample surface, we will deal with only one

surface and we will assume that our sample is in fact a

half-plane, for example a lower half-space (x < 0).
Let the surface prefer a ferroelectric synclinic

(SmCSPF) structure with �1 ¼ �2 ¼ �. Then the

anchoring energy (4) on the surface at x ¼ 0 (with
~NS ¼ 1; 0; 0ð Þ) for the synclinic ferroelectric structure

can be written as:

WA ¼� �1 sin2 �� �2 sin�þ �5 cos2 �

þ ð�1 þ �2Þ:
ð6Þ

A constant term �1 þ �2 was added in (6) to identify

the total minima of (6) at � ¼ �
2
; 5�

2
(synclinic order on

the surface) with zero energy, i.e. WAMin ¼ 0. Energy

(6) has a local minimum between two maxima.

The local minimum of (6) is situated at � ¼ 3�
2

with

the energy of WALm ¼ 2�2. The maxima of WA are at

� ¼ 3�
2
� �with cos� ¼ �2

2 �1þ�5ð Þ , i.e. the values of WA at

� ¼ 3�
2
� � are WAMax ¼ 2 �1þ�5ð Þþ�2ð Þ2

4 �1þ�5ð Þ . Then the relation

between energy of the maxima and local minimum

WAMax

WALm

¼ 2 �1 þ �5ð Þ þ �2ð Þ2

8�2 �1 þ �5ð Þ � 1;

is always satisfied.

The influence of the surface anchoring energy

extends a thickness d towards the sample bulk, which

is also the thickness of the ferroelectric domain under

the surface. This thickness d can be estimated by com-

paring the anchoring energy (3) with the bulk energy of
the antiferroelectric structure which is supposed to be

preferable in the bulk:

wC Mind þ WAMax �WAMinð Þ � 0:

The parameter wC Min is the minimum value of the energy

density wC. The energy wC is the non-gradient part of the

free energy density of liquid crystal which is usually used

to describe structural transitions. In (9, 10) a special one-
constant energy wC was proposed, giving a minimal

value wC Min ¼ ���=4 for anticlinic antiferroelectic

structures, while the ferroelectric synclinic structure was

characterised by a maximal value wC Max ¼ 0.

Using the above relation the thickness d can be esti-

mated as:

d � 2 �1 þ �5ð Þ þ �2ð Þ2

�1 þ �5ð Þ��
: ð7Þ

The core of the surface disclination in nematic

liquid crystals was described by the PN model for the

first time in (16, 17) and then applied to chiral smectic

C liquid crystals in (5). The PN model can be used

when the orientation of the director in the bulk of the
liquid crystal satisfies Equation (5). Therefore we can

also use the PN approach in our simplified model of

the core structure of disclination in the SmCSPF phase.

Let the director on the surface situated at x ¼ 0 be

described by the angle ’ zð Þ ¼ � x ¼ 0; zð Þ. The deriva-

tive d’ðzÞ=dz is the so-called density of continuous

distribution of infinitesimal disclinations spread along

the z-axis (16). As the infinitesimal disclination has the

strength d’, then we have
Rþ1
�1

d’ðzÞ
dz

dz ¼ � and � ¼ 2�

or � is the total surface disclination strength (17).

As demonstrated in (16), the core structure of surface

disclination is described by the PN equation in the form:

� dWA

d’
¼ K

�

Zþ1
�1

d’ z¢� �
dz¢

dz¢

z� z¢ : ð8Þ

The integral should be understood as the Cauchy prin-

cipal value. The PN equation (8) is the balance between

torques from all infinitesimal disclinations on the sample

surface and the surface torque � dWA

d’ due to the surface

anchoring energy (3).

Equation (8) is the so-called Hilbert transformation

of the density
d’ zð Þ

dz
giving the force law � dWA

d’ . A more

general method of construction of Hilbert pairs
d’ zð Þ

dz

and � dWA

d’ is given in (18).

In analogy with (5) we propose the 2�-disclination

core structure in the form composed of solutions cor-

responding to two �-disclinations:

’ zð Þ ¼ arctan
z� zo

�
þ arctan

zþ zo

�
þ 3�

2
: ð9Þ

The parameter � determines the disclination core

width. Parameters � zo are positions of both partial

�-disclinations (5). The constant 3�=2 assures map-

ping of the interval z 2 �1;þ1ð Þ onto the interval

’ 2 �=2; 5�=2ð Þ. The density of infinitesimal disclina-

tions
d’ zð Þ

dz
is positive. Another solution of Equation

(8) can be obtain from Equation (9) by the transfor-

mation ’ðzÞ ! 3�� ’ðzÞð Þ, which maps the interval

z 2 �1;þ1ð Þ onto the interval’ 2 5�=2; �=2ð Þ. The
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solution 3�� ’ðzÞð Þ has the derivative

d 3�� ’ðzÞð Þ=dz < 0 and describes the (-2�)-disclina-

tion core structure.

The core energy of the 2�-disclination described by

the solution of Equation (9) (see for example (16)) does

not depend on the form of the force law � dWA=d’
and it can be written as:

Ecore ¼ 2�K : ð10Þ

Using the proposed solution (9), Equation (8) gives

� dWA=d’ as a function of z.

Then WA can be found by integration:

WA zð Þ ¼
Zz

�1

dz¢ dWA

d’ z¢ð Þ
d’ z¢� �

dz¢ ; ð11Þ

with WA zð Þ ¼ 0 at z! �1, which corresponds to the

surface energy minimum equal to zero at � ¼ �
2

in

correspondence with Equation (9). This is the reason

why also in Equation (6) the energy minima were fixed

to zero for � ¼ �
2

and 5�
2

.

Using Equations (8) and (9) the energy WA ’ zð Þð Þ
given by Equation (11) can be written as:

WA zð Þ ¼ K

2

�

�2 þ z� zoð Þ2

(
þ �

�2 þ zþ zoð Þ2

þ 1

zo

arctan
zþ zo

�
� arctan

z� zo

�

� ��
:

ð12Þ

Energy expression (12) can be numerically compar-
able with expression (6) with’ zð Þ inserted from (9), i.e.

WA ’ð Þj’¼’ zð Þ in order to fix parameters zo and �. The

starting values of those parameters for numerical cal-

culations can be determined tentatively from the posi-

tions of the local minimum and maxima.

The position of the anchoring energy minimum

corresponds to � ¼ 3�
2

, i.e. z ¼ 0 from Equation (9).

Equation (12) then leads to the relation:

2�2

K
� ¼ 1

1þ t2
þ 1

t
arctan t; ð13Þ

with the parameter t ¼ zo=�. As �2> 0, we also have

� > 0.

The z-coordinate of the position of the maximum

follows from the condition dWA ’ zð Þð Þ=dz ¼ 0, which

gives two real roots z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

o � �2
q

as positions of two

maxima. Then, for example for the positive root, we

have the second condition in the form:

2 �1=K þ �5=Kð Þ þ �2=Kð Þ2

4 �1=K þ �5=Kð Þ �

¼ 1

2t
tþ arctan t�

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p� ��

þ arctan tþ
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p� ��

: ð14Þ

The elimination of � gives a transcendent equation

yielding a numerical solution of t depending on anchor-

ing parameters �1, �2 and �6. The determined numer-

ical value t gives the parameter � from Equation (14).

Thus the estimated numerical values t and � can be used
as starting values for their more exact numerical deter-

mination, minimising squares of the difference of sur-

face anchoring energies (6) (with inserted (9)) and (12):

WA ’ zð Þð Þ �WA zð Þð Þ2:

The proposed core structure (10) can be extended to

the lower half-space as:

� x; zð Þ ¼ � arctan
z� zo

x� � � arctan
zþ zo

x� � þ
3�

2
; ð15Þ

using the method of Cauchy integrals, which extends

the function on the line boundary to the half-plane (17).

This solution, valid for the lower half-space, corre-

sponds to two �-twist disclinations situated at z ¼ �zo

and x ¼ �. Singularity of the solution is in the upper

half-plane and thus at the surface x ¼ 0; in the half-

space x < 0 there is no singularity.
A schematic drawing of the molecular distribution

in the core of the 2�-disclination spread on the sample

surface along the z-axis is shown in Figure 3. In the

figure, bent-shaped molecules are represented by pro-

jections onto the x; zð Þ-plane. They are rotating on the

surface of a cone with the apex angle � shown in Figure

1. The vector~p characterising the molecular polarisa-

tion is tangential to the cone surface, i.e. the angle  is
fixed as  ¼ �=2.

3.2 (p)-surface disclination core

Another surface disclination can be realised when, at

the surface, there is a line boundary between two syn-

clinic ferroelectric domains of different chirality. This

situation can be possible similarly to as in Section 3.1

when we deal with polar anchoring-preferring synclinic

ferroelectric domains up to the thickness d given by

expression (7) which are also able to overcome the
internal barrier energy (19), at least for molecules adja-

cent to the sample surface. Note that this internal bar-

rier energy keeps the molecular polarisation parallel to
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smectic layers during molecular rotation. When the
surface polar anchoring is able to order dipole moments

of liquid crystal molecules, the rotation of director~c is

accompanied by simultaneous rotation of vector~p. For

the ferroelectric order we have �1 ¼ �2 ¼ � and

 1 ¼  2 ¼  where the angle  now varies. Then
~pþ ¼~p,~p� ¼ 0 and~cþ ¼~c,~c� ¼ 0.

Due to very strong polar anchoring we expect that the

absolute value of projection of~p onto the surface normal,
i.e. ~NS~p


 

, will attain a maximal possible value during~c-

director rotation given by the condition @ ~NS~p


 

=@� ¼ 0.

This last condition gives the relation between angles �
and  : cos � sin� cos þ cos� sin ¼ 0, or

tan ¼ � cos � tan�: ð16Þ

Expression (16) is equivalent to the condition py ¼ 0

as seen from (1). The condition (16) determines the

angle from the angle �. The simultaneous rotation of

the director and polarisation vector leads to the chir-

ality change (1, 2).

Note that the elastic energy for independent angles

� and  is generally non-linear, as can be seen from (7,

8). However, the use of condition (16) eliminates gra-

dients of the angle  in the elastic free energy density.
In one-constant elasticity we obtain (with the help of

(20)) the free energy density (without the chiral term

and with � ¼ �=4) in the form:

K

2

23þ 8 cos 2�þ cos 4�ð Þ
4 3þ cos 2�ð Þ2

@ �

@ x

� �2

þ @ �

@ z

� �2
" #

:

As

1

2
� 23þ 8 cos 2�þ cos 4�ð Þ

4 3þ cos 2�ð Þ2
� 1

for all � 2 0; 2�ð Þ, let us approximate the above
expression by its upper limit, the expression (4).

Using (1), (16) and the methods of (20), the surface

energy (3) takes the form:

WA ¼ ð�1 þ �2Þ þ �5 cos2 �

þ
cos �
cos�

� �
��1

cos �
cos�

� �
þ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 � tan2 �

p� �
1þ cos2 � tan2 �

:

ð17Þ

We again add the constant �1 þ �2ð Þ to WA in order to

satisfy the boundary conditions:

lim
�! �=2ð Þþ

WA ¼ lim
�! 3�=2ð Þ�

WA ! 0:

The surface energy (17) has surely one maximum

when �1 can be neglected with respect to �2, i.e.
�1<< �2. We then propose the solution of (8) in a

simple form (5, 16):

’ zð Þ ¼ arctan
z

�
þ �; ð18Þ

which maps the interval z 2 �1;þ1ð Þ onto the inter-

val ’ 2 �=2; 3�=2ð Þ.
The expression (16) can be solved as

 ¼ arctan � cos � tan�ð Þ � �. This branch of the
function arctan is chosen to assure that the direction

zoz −= 0=z zoz =
z 

x 

Figure 3. Schematic drawing of the director profile of 2�-disclination core under the sample surface. Molecular orientation in
neighbouring layers (having their normal parallel to the z-axis) is represented by triangles where the thicker line corresponds to the
arm of the bent-shaped molecule inclined toward the observer. Dashed lines indicate the projection of the molecular director~n onto
the plane of the figure. Molecular spontaneous polarisations are depicted by arrows. Symbols (�) or (·) denote polarisations pointing
up or down (with respect to the x; zð Þ-plane), respectively. Molecules with those symbols are projected to the x; zð Þ-plane as lines. The
disclination core is centred around z ¼ 0 where the molecular polarisation points up (i.e. towards the observer looking at the sample
surface) while far from z ¼ 0 polarisation is oriented down. Both partial �-disclinations are centred near z ¼ �zo. In the scheme bent-
shaped molecules rotate on the surface of the cone shown in Figure 1, keeping the molecular polarisation tangential to the surface of
the cone. The figure presents the molecular projections onto the x; zð Þ-plane.
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of polarisation ~p is preferentially oriented along the

surface polarisation, i.e. along the x-axis. The angle  
then lies in the interval  2 ��=2; �3�=2ð Þ.

In Figure 4 the core structure of the �-disclination

described by the solution (18) on the sample surface is

shown schematically. In this case molecules rotate

simultaneously on the surface of the cone (change of
the azimuthal angle �) and around the director~n (see

Figure 1). In Figure 4(a) projections of bent-shaped

molecules onto the ðx; zÞ-plane are shown. Note that

molecules are inclined with respect to the ðx; zÞ-plane

while polarisations are always situated in this plane

because the condition (16) assures that the y-compo-

nent of~p is zero, i.e. py ¼ 0.

Flank molecules of Figure 4(a) are shown in per-
spective in Figure 4(b) and 4(c). The ends of molecules

(a) 

z 

x 

(b) 

z

y p

x

θ = π / 4

ψ = –π / 2n

(c)

θ = π / 4

ψ = –3π / 2

φ = 3π / 2

φ = π / 2

n

p

z

x

y

Figure 4. Schematic drawing of the director profile of �-disclination core just under the sample surface ðy; zÞ. In (a) a row of
molecules projected onto the plane ðx; zÞ is displayed. With the exception of the molecule in the central column, molecules are
inclined with respect to the ðx; zÞ-plane while molecular polarisations are always in the ðx; zÞ-plane. The molecule in the central
column lies in the ðx; zÞ-plane and it is tilted with respect to the surface by a tilt angle �. In (b) and (c) the molecules are shown in
perspective. The molecule in (b) is the left molecule in (a) and in (c) the right molecule of (a) is shown, respectively.
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in Figure 4(b) and (c) lie on the sample surface. The

molecular orientations are characterised by angles

� ¼ �=2,  ¼ �=2 and � ¼ 3�=2,  ¼ �=2,

respectively.

Boundary solution (18) and Equation (8) are valid

when the elastic behaviour of the liquid crystals is

approximated by the expression (4). The bulk solution
� again satisfies the equation �� x; zð Þ ¼ 0. In this case

the energy WA ’ zð Þð Þ takes a simple form:

WA zð Þ ¼ K

2

�

�2 þ z2

� �
: ð19Þ

The position of the maximum of (19) corresponds to

z ¼ 0 (i.e. ’ z ¼ 0ð Þ ¼ �). Then:

WA ’ ¼ �ð Þ ¼ �2 1� cos �ð Þ þ �5; ð20Þ

is the maximum value of WA. By comparing
WA z ¼ 0ð Þ ¼ K

2� with (20) we obtain the parameter �:

� ¼ K

2 �2 1� cos �ð Þ þ �5½ � : ð21Þ

Using (16) the core energy of the �-disclination

described by the solution (18) can be written as:

Ecore ¼ �K=2: ð22Þ

The proposed core structure (18) can be extended to

the lower half-space as:

� x; zð Þ ¼ � arctan
z

x� � þ �: ð23Þ

4. Discussion

Strong polar surface anchoring and preference for syn-

clinic structure induces a ferroelectric synclinic structure

near the surface. An external electric field can create in

surface synclinic ferroelectric structures either 2�-walls

(with no chirality change) or �-walls accompanied by
chirality change (4). Switching off the field leads to the

collapse of walls in the sample bulk. However, strong

surface anchoring can eventually keep remnants of walls

at the surface as 2�- and �-surface disclinations. Here we

have investigated the core structures of those disclina-

tions spread on the sample surface.

In the case of 2�-surface disclination we assume

that the molecular polarisation was fixed with respect
to the molecular director and that it rotates in the same

manner as the director. The core structure of 2�-dis-

clination was proposed in the form of two �-disclina-

tions positioned at z ¼ �zo with a core width 2�. When

anchoring parameters �1, �2 and �5 are known, para-

meters zo and � can be determined. The estimation of

the order of parameters zo and � can be carried out

using the approximate determination of anchoring

parameters in (9). In (9) �1 � 0, �2 � 10�3J m-2 and

�5 � 2 · 10�3J m-2 were determined for materials

denoted 10WDVI and 11BVID11 (3, 9). Using an
approximate value of the parameter �� � 103–105 J

m-3 (9) the thickness d within which the surface

anchoring induces ferroelectric order near surface

can be estimated as d � 0.1–10 mm.

Let the order of the elastic constant of the liquid

crystal be K � 10�11J m-1 (21). Then �2=K � 102 mm-1

and �5=K � 2·102 mm-1. Conditions (13) and (14) give

numerically � � 0:0024 mm and zo � 0.008 mm. The
values of those parameters change only slightly when

minimising squares of surface anchoring energies.

Profiles of the anchoring energy WA�/K (in non-

dimensional units) as a function of �=� and the corre-

sponding density of the infinitesimal surface disclina-

tions d’ zð Þ=dz for the above-listed parameters are

1.0 1.5 2.0 2.5
φ / π

α [μm–1]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

WAξ / K

10 5 5 10
z / ξ

100

200

300

400

Figure 5. Plots of (a) surface anchoring energy WA�=K (in
non-dimensional units) as a function of �=� 2 1=2; 5=2ð Þ,
and (b) the density of infinitesimal surface disclinations
representing the core of 2(-surface disclination. Both plots
are calculated for parameters: �1 � 0, �2 � 10�3 J m-2,
�5 � 2 · 10�3 J m-2, � � 0:0024 mm, zo � 0.008 mm and
K � 10�11 J m-1.
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illustrated in Figures 5(a) and 5(b), respectively. A

local minimum in the anchoring energy leads to a

local minimum in the disclination density, meaning

that 2�-disclination is dissociated into two partial �-

surface disclinations. The separation of both �-discli-

nations is 2zo � 0.016 mm and the width of the 2�-

surface disclination core is then 2 zo þ �ð Þ � 0.021 mm,
which is a very thin core.

In principal, there is another possibility to realise

2�-surface disclination by transition through a ferro-

electric-like structure in the core, i.e. it can be supposed

that �1 ¼ �, �2 ¼ �=2 and  1 ¼  2 ¼ �=2. This means

that the molecular rotation for 2� is realised in odd

planes while molecules in even planes rest fixed in the

minimum of the anchoring energy. In this case the core
structure is determined by a balance between the sur-

face anchoring energy, elastic energy and antiferroelec-

tric energy wC. However, such a model leads to a non-

linear equilibrium equation in the bulk of the liquid

crystal and we cannot use the PN model for description

of the disclination core. We cannot therefore consider

this solution in the present work.

When strong polar anchoring prefers synclinic ferro-
electric domains and overcomes the internal energy bar-

rier of the polarisation rotation (19) near surfaces then a

�-surface disclination separating two synclinic ferroelec-

tric domains of different chirality can exist. As discussed

above in Section 3.2, the rotation of the molecular

director ~n around the layer normal in the disclination

core is accompanied by the simultaneous rotation of the

molecular polarisation unit vector~p around~n in such a
way that molecular dipole moments are parallel to the

surface polarisation. For this reason the �-surface dis-

clination connects surface domains of opposite chirality.

As an illustration we again used the estimated para-

meters of 10WDVI and 11BVID11 (3, 9). Then the

core width 2� is given as 2� � 0.0044 mm. The core

width is in this case very thin, and so the �-surface

disclination is probably hardly detectable. The descrip-
tion of the �-disclination above (in Section 3.2) using the

PN model is valid when the elasticity of the liquid crystal

can be approximated by the energy density (4).

A �-disclination core distributed along the z-axis is

schematically represented in Figure 4. Due to the

anchoring, the main part of the molecular polarisation

points inside the sample, preferably along the x-axis.

Due to the condition (16) there is no y-component of
polarisation.

When the B2 structure is characterised by the tilt

angle � ¼ �=4 no optical contrast can be distinguished

on both sides of a line as in (4). In other cases domains

of different contrast separated by the �-disclination

can be expected.

A wider core of the �-surface disclination can be

found with compounds which have lower anchoring

energies. Taking model values, e.g. �2=K � 1 mm-1

and �5=K � 0.7 mm-1, the expression (21) gives

2	 � 1 mm. In contrast, the thickness d can be esti-

mated as d � 0.1–0.001 mm in this case because the

parameter �� is the same.

In the case of strong anchoring keeping molecular

dipole moments mostly oriented along the surface nor-
mal, a 2�-surface disclination core will also be modified.

Both partial �-surface disclinations will have a structure

similar to that shown in Figure 4. Nevertheless, far from

the core, structures have the same chirality.

Finally, let us discuss the behaviour of the core of

surface disclinations in a weak external electric field.

In the sample of thickness d, the near-surface energy

density of the electric field PsE sin� (with spontaneous
polarisation Ps and intensity of an electric field E)

competes with polar anchoring. Therefore the energy

of the field can be estimated as dPsE sin� (small field).

In order to discuss qualitatively the behaviour of

the 2�-core at small fields we simply change

�2 ! �2 � dPsE in (13), which gives approximate

values of � and t. We can distinguish two cases differ-

ing in the sign of PsE. When PsE < 0, an electric field
increases the anchoring and the core width 2 zo þ �ð Þ
decreases. This is seen by taking e.g. zo � � and a

modified equation (13), which leads to a decrease of

� for a small increase of PsE. As we expect, for stronger

fields disclination will transform in a wall in the sam-

ple bulk. When PsE > 0, an electric field has a ten-

dency to compensate for the polar anchoring acting

against it. Suppose now, for simplicity, that widths of
partial �-disclinations do not change with field but can

relatively simply displace themselves in the field. This

means their positions zo change. Then Equation (13),

simplified to the form
2 �2�dPsEð Þ

K
� � �

2t
, shows that t

(respectively zo) has a tendency to increase with the

increase of the electric field. In fact, the core region

acts as a nucleus of opposite polarisation, i.e. mole-

cules have polarisations oriented against the surface
anchoring polarisation. As an external applied electric

field is also oriented against surface polarisation, it

increases the core region. The approximations used

are valid in a small field. A similar qualitative conclu-

sion can be obtained using a simplified Equation (14).

In the case of �-surface disclination, its core width

2� has a tendency to decrease under an external electric

field for which PsE<0 (and eventually create a wall in a
sample bulk). On the other hand, when PsE > 0, the

width 2� increases with the increasing field.

There is an important difference between 2�- and

�-surface disclinations: the core of the 2�-disclination

is already a nucleus of ferroelectric structure with

opposite polarisation which can spread in an opposite

electric field. For structures separated by a �-disclina-

tion, the opposite field should first nucleate a nucleus
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of opposite polarisation. Therefore the switching of

the electric field could be simpler for 2�-surface

disclination.

In conclusion, the structures of surface 2�- and �-

disclination cores stabilised by surface anchoring were

investigated using the Peierls–Nabarro model. Model

parameters such as core width and separation of partial
disclinations were estimated. Estimations of the core

width of 10WDVI and 11BVID11 materials give very

thin cores. The disclination core width depends inver-

sely on the anchoring energy parameters (see e.g.

expression (21)). In liquid crystals with smaller anchor-

ing parameters the disclination core width 2� is greater.

The present model considers only a particular case

of possible surface disclinations in the B2 phase, but we
hope it opens the path to more complex studies con-

cerning walls in B2 structures under an electric field,

which are frequently observed (see e.g. (4, 6)).
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